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Abstract. A novel effective operator, named HIerarchical LOcal Pat-
tern (HILOP), is proposed to efficiently exploit relationships of local
neighbors at each adjacent pairwise of different regional hierarchies lo-
cated surrounding a center pixel of a texture image. Instead of thresh-
olding by the value of central pixel, the gray-scale of each local neighbor
in a hierarchical area is compared to that of all of neighbors in the re-
main region. In order to capture shape and motion cues for dynamic
texture (DT) representation, HILOP is taken into account for investi-
gating hierarchical relationships in plane images of a DT sequence. The
obtained histograms are then concatenated to form a robust descriptor
with high performance for DT classification task. Experiments on various
benchmark datasets (i.e., UCLA, DynTex, DynTex++) have validated
the interest of our proposal.

Keywords: Dynamic texture · Hierarchical local pattern · Hierarchical
encoding · LBP · Video representation.

1 Introduction

Efficiently encoding dynamic textures (i.e., textural structures repeated in
a temporal domain) is a decisive task of various applications in computer vi-
sion, e.g., facial expressions [34, 44], tracking objects [18, 40, 11], fire and smoke
detection [6], etc. To this end, many approaches have been proposed for DT
representation in which the main problems (e.g., turbulent motions, noise, il-
lumination, etc.) are addressed in order to improve the discrimination power
in DT recognition. These approaches are roughly grouped into the following
categories. First, optical-flow-based methods [25, 27, 10, 23] are mainly based on
direction properties of normal flow to effectively capture the turbulent motion
characteristics of DTs in sequences. In the meantime, model-based methods [7,
17, 41, 29] have addressed Linear Dynamical System (LDS) [35] and its variants
in order to deal with the complication of chaotic motions (e.g., turbulent wa-
ter) and camera moving features (e.g., panning, zooming, and rotations). On the
other side, filter bank techniques are exploited in filter-based methods to reduce
the negative impacts of illumination and noise on video representation [3, 34].
Motivated by geometry theory, geometry-based methods estimate self-similarity
features using fractal analysis in order to be robust against the illumination and
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environmental changes, such as Dynamic Fractal Spectrum (DFS) [43], Multi-
Fractal Spectrum (MFS) [42], Wavelet-based MFS [15], Spatio-Temporal Lacu-
narity Spectrum (STLS) [32]. Recently, learning-based methods are interested
in, particularly deep learning techniques thanks to their high accuracy of DT
recognition. Two trends of those are as follows: i) exploiting Convolutional Neu-
ral Network (CNN) for capturing deep features [28, 1, 2]; ii) using kernel sparse
coding for learning featured dictionaries for DT description [31, 30]. In the mean-
while, local-feature-based methods have also achieved promising rates with simple
and efficient computation, in which Local Binary Pattern (LBP) operator [24]
and its variants have been taken into account DT representation. Two main tech-
niques of those are mostly prompted for video description as follows: Volume LBP
(VLBP) [44] for encoding dynamical features in consideration of spatio-temporal
relationships on three consecutive frames; and LBP-TOP [44] for capturing mo-
tion and shape clues by using LBP on three orthogonal planes of sequences.

In consideration of gray-level differences between a center pixel and its local
regions, LBP-based variants have acquired the promising rates on DT classifi-
cation. However, they have remained several internal limitations, such as sen-
sitivity to noise, near uniform regions [37, 21], and large dimension [44, 33, 36].
Addressing those obstacles, we introduce in this work a novel and effective op-
erator HILOP to capture relationships between its local neighbors at a pairwise
of different hierarchical regions. Accordingly, a center pixel is encoded by com-
paring the gray value of each neighbor in the first hierarchical region with all of
those in the other. HILOP is then involved with analyzing plane images of a DT
sequence in order to structure spatio-temporal features for DT representation.
The obtained probability distributions are concatenated and normalized to form
a descriptor with more discrimination power for DT classification. In short, it
can be listed the major contributions of this work as follows.

– A novel, efficient local operator HILOP is able to efficiently capture textural
features based on analyzing a pairwise of hierarchical regions where the local
neighbors in a hierarchy are consecutively thresholded by all of those in the
remain instead of by the center pixel as the existing LBP-based variants.

– Multi-hierarchy HILOP encoding allows to enrich appearance information
by addressing more further supporting regions.

– An efficient framework for DT representation in which spatio-temporal fea-
tures are hierarchically exploited thanks to utilizing benefits of HILOP.

2 Proposed Method

As mentioned above, using a simple computation, local-feature-based meth-
ods have achieved promising results on DT classification. However, limitations
of their performance are often caused by problems of sensitivity to noise, illumi-
nation, and near uniform regions. In this section, we first take a look of LBP and
its variants as well as their application in DT representation. We then propose a
novel, simple operator HILOP in order to investigate local relationships in hier-
archical supporting regions. Finally, an efficient framework for DT description is
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presented to take advantage of the beneficial properties of HILOP for addressing
above restrictions of LBP-based variants.

2.1 A brief review of LBP and its operation for DT description

In consideration of relationships between a pixel and its surrounding regions,
Ojala et al. [24] introduced a simple operator LBP in order to capture local
characteristics for still image representation. Appropriately, let I denote a 2D
gray-scale image. A LBP code of a pixel q ∈ I is featured by comparing the
gray-level differences between q and its local neighbors {pi}Pi=1 as follows.

LBPP,R(q) =

P−1∑

i=0

f
(
I(pi)− I(q)

)
2i (1)

in which P means quantity of q’s neighbors that are sampled on a circle of radius
R using an interpolated calculation, I(.) points out the gray-value of a pixel, and
function f(.) is defined as follows.

f(x) =

{
1, x ≥ 0

0, otherwise.
(2)

As the result of that, it takes a large dimension (i.e., 2P distinct values) for
describing a still image. Therefore, two conventional mappings should be applied
in practice to deal with this restriction: u2 with P (P −1)+3 bins and riu2 with
P + 2 for structuring uniform patterns and rotation-invariant uniform patterns
respectively. Furthermore, other mapping techniques can be also remarkable to
enhance the encoding power, such as Local Binary Count [46] - a substitution
for addressing uniform characteristics, topological mapping TAPA [19].

Inspired by the simple and efficient properties of operator LBP in still image
encoding, several efforts have taken it into account DT representation. First,
Zhao et al. [44] structured a voxel by considering its P neighbors along with
its two symmetrical voxels and 2P corresponding neighbors placed in the pre-
vious and posterior frames. All of these neighbors along with two symmetrical
voxels are then thresholded by the concerning voxel to form a VLBP code of
3P + 2 binary bits. Due to the huge dimension of VLBP (i.e., 23P+2 bins), it
is limited in real applications. In order to handle this shortcoming, Zhao et al.
[44] considered a voxel and its P neighbors on each orthogonal planes of a video
to shape LBP-TOP patterns. The obtained probability distributions are con-
catenated and normalized to form the final descriptor with 3 × 2P dimensions.
After that, many proposals mainly based on these encoding models to improve
the discriminative performance: CVLBC [45] - a combination of CLBC [46] and
VLBP; CVLBP [36] - an integration of CLBP [13] and VLBP; CLSP-TOP [21],
CSAP-TOP [22], and HLBP [37] - dealing with noise and illumination problems.
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Fig. 1. An instance of structuring at pi=3,pi=4 ∈ Ω1 based on {qj}N=8
j=1 of Ω2.

2.2 Hierarchical Local Patterns

Let Ω1 = {pi}Ni=1 and Ω2 = {qj}Nj=1 be two different hierarchies of sup-
porting regions of a pixel q in a texture image I, so that Ω1

⋂
Ω2 = Ø. Each

neighbor pi in hierarchical region Ω1 is encoded as a binary string of N bits by
considering the difference of pi’s gray value with that of all qj ∈ Ω2 as follows.

L(pi ∈ Ω1, Ω2) = {g(I(qj)− I(pi))}Nj=1 (3)

in which I(.) returns the gray-value of a pixel. g(.) is identical to Equation (2).
Figure 1 graphically shows an instance of this computation using N = 8 neigh-
bors for each circle-hierarchical region. Accordingly, two-hierarchical pattern of
q based on a pairwise of supporting regions (Ω1, Ω2) is featured by addressing
all neighbors pi of supporting region Ω1 as follows.

ΓΩ1,Ω2(q) = [L(pi ∈ Ω1, Ω2)]Ni=1 (4)

It should be noted that Γ (.) is absolutely different from structuring difference-
based patterns introduced in [16], i.e., RD-LBP and AD-LBP. More specifically,
in this work, all of qj ∈ Ω2 are thresholded with each of pi ∈ Ω1 to be able to
figure out N patterns. In contrast to that, RD-LBP [16] is formed by comparing
a pairwise of (qj , pj) in parallel to achieve only one pattern, while AD-LBP [16]
is computed by addressing the differences of pixels in the same regions.

In order to forcefully enrich discriminative information, we address the func-
tion Γ (.) on multi-region of adjacent hierarchies to capture more useful features
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Fig. 2. Our proposed framework of encoding a video V.

in further areas. According to that, let D = {Ω1, Ω2, ..., Ωm} be a set of hierar-
chical supporting regions of a pixel q ∈ I, so that Ωk

⋂
Ωk+1 = Ø. HIerarchical

LOcal Pattern (HILOP) of q is formed as follows.

HILOPI(q,D) = [ΓΩk,Ωk+1
(q)]mk=1 (5)

2.3 DT Representation Based on HILOP Patterns

In this section, a simple framework to efficiently structure shape information
and motion clues of DTs is proposed by exploiting the advantages of HILOP’s
properties for video representation. For an input sequence V, the proposed frame-
work takes three main stages as follows. Firstly, the video V is split into plane
images subject to its three orthogonal planes {XY,XT, Y T} (see Fig. 2 for a
graphical illustration). Secondly, the proposed operator HILOP is taken into ac-
count for analyzing each plane in order to capture hierarchical features based on
a set of multi-layer supporting regions D. Finally, the obtained histograms are
concatenated and normalized to produce a robust descriptor HILOP(V) as

HILOP(V) = [HILOPXY (q,D),HILOPXT (q,D),HILOPY T (q,D)] (6)

Our proposed descriptor HILOP(V) based on the following beneficial prop-
erties in order to improve the discrimination power:

– The HILOP operator structures hierarchical patterns by considering rela-
tionships of a pairwise of regional hierarchies, instead of those between a
center pixel and its local neighbors as conducted in LBP-based variants.

– The performance of proposed descriptor is enhanced thanks to taking HILOP
into account analyzing plane images of a DT sequence in order to efficiently
encode spatio-temporal properties of DTs.
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input image Ω1 = (8, 1), Ω2 = (8, 2)

L(p1, Ω1, Ω2) L(p2, Ω1, Ω2) L(p3, Ω1, Ω2) L(p4, Ω1, Ω2)

L(p5, Ω1, Ω2) L(p6, Ω1, Ω2) L(p7, Ω1, Ω2) L(p8, Ω1, Ω2)

Fig. 3. Several HILOP patterns structured using a hierarchy D = {(8, 1), (8, 2)}.

– Incorporation of hierarchical features captured in multi-supporting hierar-
chies allows to enrich more forceful discriminative information.

3 Experiments

In order to verify execution of proposed descriptor HILOP, we address it for
DT classification task on various benchmark datasets, i.e., UCLA [35], DynTex
[26], and DynTex++ [12]. A linear multi-class SVM classifier which is enforced
in the library of LIBLINEAR3 [9] is employed with the default settings. The
acquired results are then compared to those of the state-of-the-art approaches.

3.1 Experimental Settings

To be compliant with LBP encoding, each Ωi ∈ D should be structured by
P neighbors which are interpolated on a circle of radius Ri at center pixel q, i.e.,
Ωi = (P,Ri). According to that, we addressD = {(8, 1), (8, 2), (8, 3), (8, 4), (8, 5)}
in order to investigate further hierarchical local regions (i.e., N = 8). For
computing a histogram, we use u2 mapping for each pattern L(.) to capture
HILOP uniform features. As the result of that, the final descriptor HILOP has
(|D|−1)∗3P (P (P −1)+3) dimensions (see Table 2 for specific instances), where
|D| denotes the number of hierarchical regions involved in, i.e., |D| = 5 in this
case. Several HILOP samples of this encoding are shown in Fig. 3.

3.2 Datasets and Protocols

In order to verify the performance of our proposal, we detail in this section
features of benchmark datasets along with their experimental protocols for DT
recognition task. In addition, Table 1 shows their properties in brief for a look.

UCLA [35] includes 200 DT videos in 110 × 160 × 75 dimension that are
categorized into 50 classes with four sequences for each of them (see Fig. 4(a)
for some samples). With DT classification issue, a tiny version of 48 × 48 × 75
sequences is usually used and arranged into challenging sub-sets as follows.

3 https://www.csie.ntu.edu.tw/∼cjlin/liblinear
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(a)
candle fire sea waterfall plant fountain

(b)
flag foliage grass tree traffic fountain

Fig. 4. Samples of DT videos in UCLA (a) and DynTex (b) datasets.

– 50-class: Using the scheme of 50 original classes along with two following
protocols: leave-one-out (LOO) [3, 38] and 4-fold cross validation [21, 37].

– 9-class and 8-class: 200 DT sequences are grouped to form scheme 9-class
with the following labels and corresponding numbers of sequences: “boil-
ing water”(8), “plants”(108), “flowers”(12), “fire”(8), “fountains”(20), “wa-
ter”(12), “smoke”(4), “sea”(12), and “waterfall”(16). Because of the domi-
nant quantity in “plants” category, it is eliminated to establish scheme 8-
class with more challenges in DT recognition [43]. Following the setting pro-
tocol in [12, 21], a half of sequences in each categories is randomly selected
in order to train a classifying model, and the rest for the testing phase. The
final rates on these schemes are reported as the average rates of 20 runtimes.

DynTex [26] consists of more than 650 high-quality DT sequences which are
recorded in different conditions of environment (see Fig. 4(b) for some particular
instances of them). Similar to the setting in [2, 3, 8], rates of DT classification
are obtained by using LOO protocol for all of the following DynTex variants:

– DynTex35 is composed by taking out 35 sequences from DynTex and splitting
them into sub-videos in the following ways: randomly clipping each of them
at partition points of X, Y, and T axes but not at the center of them to
achieve 8 non-overlapping sub-sequences; 2 more obtained by splitting along
its T axis. Finally, these outputs are arranged into 10 categories [3, 37, 44].

– Alpha consists of three categories of 20 sequences labeled as follows: “Sea”,
“Grass”, and “Trees”.

– Beta contains 162 sequences categorized into 10 groups with various numbers
of samples: “sea”, “vegetation”, “trees”, “flags”, “calm water”, “fountains”,
“smoke”, “escalator”, “traffic”, and “rotation”.

– Gamma also includes 10 groups of 264 DT sequences with different quan-
tities: “flowers”, “sea”, “naked trees”, “foliage”, “escalator”, “calm water”,
“flags”, “grass”, “traffic”, and “fountains”.

DynTex++ is constructed by 345 original sequences of DynTex which are
pre-processed in order to retain dominant chaotic motions [12]. The outputs are
then fixed in dimension of 50 × 50 × 50 and arranged into 36 groups with 100
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Table 1. A summary of main properties of DT datasets.

Dataset Sub-dataset #Videos Resolution #Classes Protocol

UCLA
50-class 200 48× 48× 75 50 LOO and 4fold
9-class 200 48× 48× 75 9 50%/50%
8-class 92 48× 48× 75 8 50%/50%

DynTex

DynTex35 350 different dimensions 10 LOO
Alpha 60 352× 288× 250 3 LOO
Beta 162 352× 288× 250 10 LOO
Gamma 264 352× 288× 250 10 LOO

DynTex++ 3600 50× 50× 50 36 50%/50%

Note: LOO and 4fold are leave-one-out and four cross-fold validation respectively.
50%/50% denotes a protocol of taking randomly 50% samples for training and the
remain (50%) for testing.

sub-videos for each, i.e., 3600 DTs in total. Following the setting set in [3, 12,
23], a half of samples in each group is randomly selected for training phase and
the rest for testing. The final rate is calculated by averaging 10 trials.

3.3 Experimental Results

The specific executions of our proposed descriptor HILOP on different DT
datasets are presented in Table 2, in which the highest rates are in bold. It can
be validated from this table that encoding DT features in consideration of local
relationships on hierarchical regions has pointed out a robust descriptor with
promising power, as expected in Sections 2.2 and 2.3. Furthermore, it is also
verified that taking into account multi-supporting regions makes the proposed
descriptor more discriminative. Specifically, the settings of |D| = 4 and |D| = 5
have reported the best DT recognition rates (see Table 2). Due to the more
“stable” performance, D = {(8, 1), (8, 2), (8, 3), (8, 4), (8, 5)} is addressed for a
comparison with those of state of the art. In general, the performance of our
proposal is more efficient than most of methods (see Table 3), except deep learn-
ing techniques using a complex framework for learning DT features. Hereafter,
we express in detail the effectiveness of HILOP on the particular DT datasets.

Table 2. Classification rates (%) on DT benchmark datasets.

Descriptor UCLA DynTex
Dyn++D = {(P, {R})} #bins 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma

{(8, {1, 2})} 1416 98.00 98.50 96.40 93.15 98.00 98.33 88.89 92.42 96.05

{(8, {1, 2, 3})} 2832 98.50 98.50 96.95 95.22 98.57 98.33 89.51 92.42 96.19

{(8, {1, 2, 3, 4})} 4248 99.00 99.50 97.55 96.41 99.43 96.67 90.12 92.80 96.06

{(8, {1, 2, 3, 4, 5})} 5664 99.50 99.50 97.80 96.30 99.71 96.67 91.36 92.05 96.21

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold vali-
dation. Dyn35 and Dyn++ are shortened for DynTex35 sub-set and DynTex++ respectively.

UCLA dataset: Thanks to exploiting hierarchical features, the proposed
HILOP descriptor obtain promising results on this scenario. More specifically,
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Table 3. Comparison of recognition rates (%) on benchmark DT datasets

Group
Dataset UCLA DynTex

Dyn++
Encoding method 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma

A
FDT [23] 98.50 99.00 97.70 99.35 98.86 98.33 93.21 91.67 95.31
FD-MAP [23] 99.50 99.00 99.35 99.57 98.86 98.33 92.59 91.67 95.69

B
AR-LDS [35] 89.90N - - - - - - - -
KDT-MD [4] - 97.50 - - - - - - -
Chaotic vector [41] - - 85.10N 85.00N - - - - -

C

3D-OTF [42] - 87.10 97.23 99.50 96.70 83.61 73.22 72.53 89.17
WMFS [15] - - 97.11 96.96 - - - - -
NLSSA [5] - - - - - - - - 92.40
DFS [43] - 100 97.50 99.20 97.16 85.24 76.93 74.82 91.70
2D+T [8] - - - - - 85.00 67.00 63.00 -
STLS [32] - 99.50 97.40 99.50 98.20 89.40 80.80 79.80 94.50

D
MBSIF-TOP [3] 99.50N - - - 98.61N 90.00N 90.70N 91.30N 97.12N

DNGP [34] - - 99.60 99.40 - - - - 93.80

E

VLBP [44] - 89.50N 96.30N 91.96N 81.14N - - - 94.98N

LBP-TOP [44] - 94.50N 96.00N 93.67N 92.45N 98.33 88.89 84.85N 94.05N

DDLBP with MJMI [33] - - - - - - - - 95.80
CVLBP [36] - 93.00N 96.90N 95.65N 85.14N - - - -
HLBP [37] 95.00N 95.00N 98.35N 97.50N 98.57N - - - 96.28N

CLSP-TOP [21] 99.00N 99.00N 98.60N 97.72N 98.29N 95.00N 91.98N 91.29N 95.50N

MEWLSP [39] 96.50N 96.50N 98.55N 98.04N 99.71N - - - 98.48N

WLBPC [38] - 96.50N 97.17N 97.61N - - - - 95.01N

CVLBC [45] 98.50N 99.00N 99.20N 99.02N 98.86N - - - 91.31N

CSAP-TOP [22] 99.50 99.50 96.80 95.98 100 96.67 92.59 90.53 -
Our HILOP 99.50 99.50 97.80 96.30 99.71 96.67 91.36 92.05 96.21

F

DL-PEGASOS [12] - 97.50 95.60 - - - - - 63.70
Orthogonal Tensor DL [31] - 99.80 98.20 99.50 - 87.80 76.70 74.80 94.70
Equiangular Kernel DL [30] - - - - - 88.80 77.40 75.60 93.40
st-TCoF [28] - - - - - 100* 100* 98.11* -
PCANet-TOP [2] 99.50* - - - - 96.67* 90.74* 89.39* -
D3 [14] - - - - - 100* 100* 98.11* -
DT-CNN-AlexNet [1] - 99.50* 98.05* 98.48* - 100* 99.38* 99.62* 98.18*

DT-CNN-GoogleNet [1] - 99.50* 98.35* 99.02* - 100* 100* 99.62* 98.58*

Note: “-” means “not available”. Superscript “*” indicates results using deep learning algorithms. “N” indicates rates with
1-NN classifier. 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold valida-
tion respectively. Dyn35 and Dyn++ are abbreviated for DynTex35 sub-set and DynTex++ respectively. Evaluations of
VLBP and LBP-TOP operators are referred to the evaluations of implementations in [37, 28]. Group A denotes optical-
flow-based approaches, B: model-based, C: geometry-based, D: filter-based, E: local-feature-based, F: learning-based.

its performance with the comparing parameters is at 99.5% for both 50-LOO
and 50-4fold, the highest rates compared to all existing methods, including deep
learning approaches, i.e., PCANet-TOP [2] and DT-CNN[1] (see Table 3). In
terms of DT recognition on 9-class and 8-class schemes, our descriptor gains
a promising rate of 97.8% on 9-class, but just 96.3% on 8-class. In compari-
son with the typical LBP-based approaches, its ability is only better than those
of VLBP [44] (96.3%,91.96%), LBP-TOP [44] (96%, 93.67%), and CVLBP [36]
(96.9%, 95.65%) respectively (see Group E in Table 3). It may be caused by
the similarity of turbulent motion properties on regional hierarchies in DT se-
quences of two schemes. In the meanwhile, other LBP-based variants have better
recognition rates, such as CVLBC [45] (99.2%, 99.02%), CLSP-TOP [21] (98.6%,
97.72%), MEWLSP [39] (98.55%, 98.04%), and WLBPC [38] (97.17%, 97.61%)
respectively, but most of them have not been validated on the challenging Dyn-
Tex dataset, except CLSP-TOP. However, the CLSP-TOP’s performance in this
case is also not better than ours on DynTex (see Group E in Table 3).

DynTex dataset: It can be verified from Table 2 that the performance
of HILOP descriptor has been steadily increased along with more hierarchical
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supporting regions taken into account. For DT classification on DynTex35, our
obtained rate is 99.71%, the highest in comparison with those of all existing
methods, except CSAP-TOP [22] with 100% (see Table 3). However, its dimen-
sion is up to over double, 13200 bins compared to 5664 of our (see Table 2),
as well as not better than our performance on other schemes, e.g., 9-class and
8-class of UCLA. MEWLSP [39] also has the same our ability, but not working
well on 50 categories of UCLA and not been validated on the challenging sub-sets
of DynTex (i.e., Alpha, Beta, Gamma). In terms of DT recognition on DynTex
variants, our proposed framework achieves rates of 96.67%, 91.36%, 92.05% on
Alpha, Beta, and Gamma respectively. It can be seen from Table 3 that our
results are mostly better than most of state of the art, except deep learning
approaches, i.e., st-TCoF [28], D3 [14], and DT-CNN [1] in which DT character-
istics are captured by utilizing complicated algorithms in many layers of learning
process. It should be noted that this shortcoming has restricted taking them into
account mobile applications due to the limited resources of mobile devices.

DynTex++ dataset: It can be observed from Table 2 that our descriptor
achieves over 96% on this scheme for all settings of regional hierarchies. With the
highest rate of 96.21% for the comparing setting, ours is better than most of shal-
low methods (see Table 3), except MEWLSP [39], HLBP [37], and MBSIF-TOP
[3]. However, as mentioned above, those have either not been verified on Dyn-
Tex variants (MEWLSP) or not outperformed ours on DynTex (MBSIF-TOP),
and on 50-class of UCLA (MEWLSP, HLBP). Furthermore, learning methods
with complex computation also obtain lower performances compared to ours (see
Group F in Table 3), except those of using deep learning techniques, i.e., DT-
CNN [1] with the best rate of 98.58% involving with GoogleNet architecture.

4 Conclusions

A simple and efficient operator HILOP have been proposed to capture local
features in consideration of hierarchical regions surrounding an image pixel. For
DT representation, HILOP is involved with video analysis for addressing shape
information and motion cues through plane images of a DT sequence. Concate-
nation of the obtained outputs forms the discriminative descriptor, which has
been proved in above experiments for DT classification on different datasets. In
the further contexts, it can be exploited HILOP for moment images [20] to make
the description more robust against negative impacts of illumination.
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40. Wang, H., Kläser, A., Schmid, C., Liu, C.: Dense trajectories and motion boundary
descriptors for action recognition. IJCV 103(1), 60–79 (2013)

41. Wang, Y., Hu, S.: Chaotic features for dynamic textures recognition. Soft Com-
puting 20(5), 1977–1989 (2016)

42. Xu, Y., Huang, S.B., Ji, H., Fermüller, C.: Scale-space texture description on sift-
like textons. CVIU 116(9), 999–1013 (2012)

43. Xu, Y., Quan, Y., Zhang, Z., Ling, H., Ji, H.: Classifying dynamic textures via
spatiotemporal fractal analysis. Pattern Recognition 48(10), 3239–3248 (2015)
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