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Abstract—A novel method for detecting rotational symmetry
is addressed in this paper by introducing a new concept of
semi-shapes to overcome the main problem of projection-based
approaches for studying rotational symmetric properties of an
arbitrary shape. It is due to the fact that in the classical
approaches, projection cues are periodical with a period of π
preventing exploitation of rotational properties. We then propose
the profile of semi-shapes as a signature of the shape together
with a simple yet efficient technique to determine the rotation
symmetry of an arbitrary shape by considering the correlation
of this signature and its circular shift. A new measure is also
introduced to determine how good the rotational symmetry would
be. Experiments on single/compound-contour shapes have clearly
corroborated the efficacy of our proposal.

Index Terms—rotational symmetry detection, R-signature,
Radon transform

I. INTRODUCTION

Symmetric structures are omnipresent (e.g., in man-made
products, biological objects, etc.) and usually attract human
attention. As one of the basic features of shapes and objects,
symmetry plays an important role in shape analysis and other
fields of computer vision. Symmetrical shape descriptions and
the symmetrical feature detection of objects are very useful
in shape matching, model-based object, and recognition appli-
cations. Many approaches [1]–[17] have been introduced for
analyzing symmetric features. Based on the shape information,
we can generally categorize these approaches into two main
types of symmetry detection as follows.

The first category consists of methods that detect the reflec-
tionally and/or skewed symmetric characteristics of shapes.
Ogawa [1] proposed to detect the symmetric axis of shapes
by using symmetry analysis of line drawings based on Hough
transform. Yip [2] then improved this approach to deal with
both reflectional and skew symmetry. Also based on the Hough
transform, Lei and Wong [3] tried to detect and recover the
pose of reflectional and rotational symmetry from a weak
single perspective image. In other aspects, Cornelius and Loy
[8] detected bilateral symmetry in images under perspective
projection by matching pairs of symmetric features. Nagar
and Raman [15] proposed an energy minimization approach to
detect multiple reflectional symmetries, while in another work
[16], they addressed optimization on the manifold for a set

of points to determine approximately reflectional symmetry.
Based on analyses of shape signatures, Nguyen et al. [17]
recently presented robust detectors that can point out the
multiple reflectional symmetries of binary shapes constructed
by complex contour-based components.

For the second category of the symmetry detection, several
techniques have been proposed to deal with detecting the
rotational properties of shapes. Leou and Tsai [18] considered
a number of intersection points, resulted by the different
kinds of the centroid circles of a given closed-curve shape,
to determine the actual order of rotational symmetry. Also
based on the point analyses, Lin et al. [19] proposed fold-
invariant shape-specific points for detecting the orientations
of rotationally symmetric shapes, while Loy and Eklundh [6]
grouped symmetric pairs of feature points and characterized
the symmetries presented in an image. In terms of addressing
transformations in the shape analysis, Flusser and Suk [20]
introduced a new set of moment invariants which are invariant
against the similarity transforms for recognition of objects
having n-fold rotation symmetry, whilst Yip [21], [22] utilized
the transforms of Hough and Fourier to extract local features
of an arbitrary shape so that the detectors can be against
noise and occlusion. In other aspects, Cornelius and Loy [7]
detected planar rotational symmetry under affine projection.
Prasad and Davis [5] localized multiple rotational symmetry
axes in natural images using gradient magnitudes.

Recently, Aguilar et al. [23] took advantage of the Slope-
Chain-Code (SCC) theory [24], [25] to represent the curve of
binary shapes for an issue of rotational symmetry detection.
The SCC-based detector was then verified on a small set of
rotationally symmetric shapes of MPEG-7 [26]. In fact, this
detector just works on binary shapes with a single contour. It
would not be on the compound shapes with complex contour-
based parts due to its inherent restriction in the analysis of
shape’s contours. In addition, the traditional methods [17],
[27], based on R-signature [28] to analyze a given shape,
are not adaptive to a rotational symmetry application. This
is because the periodical attribute with a period of π is an
internal limitation of the R-signature in consideration of the
entire shape’s area.

To deal with the aforementioned drawbacks, we introduce in
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this work an efficient method for rotational symmetry detection
by addressing the following novel concepts. i) The correlation
of the profile of semi-shapes, obtained by a decomposing oper-
ation of a given binary shape, is proposed to detect symmetric
properties. The R-signature of these semi-shapes permits us
to overcome the conventional issue of the projection-based
methods, whose projected features would be the same after a
rotation of angle π. ii) A rotational symmetry measure ranging
from 0 to 1 is proposed to estimate how good the symmetry
is. Experiments have validated that our proposed detector can
work well in detecting the rotational symmetry on binary
shapes, particularly those with complex contour components
compared to the recent contour-based method.

II. RADON TRANSFORM

Let f , defined on R2, be a 2D function and L(θ, ρ) = {x ∈
R2 | x·n(θ) = ρ} be a straight line in R2, where θ is the angle
that L makes with the y axis, n(θ) = (cos θ, sin θ), and ρ is
the radial distance from the origin to L. The Radon transform
[29] of f , denoted as Rf , is a function defined on the space
of lines L(θ, ρ) by calculating the line integral as follows.

Rf (θ, ρ) =

∫
f(x) δ(ρ− x · n(θ)) dx (1)

Fig. 1. Radon transform.

In the shape analysis, the function f is constrained to take
value 1 if x ∈ D and 0 otherwise, where D is the domain of
the binary shape represented by f (see Fig. 1).

f(x) =

{
1 if (x) ∈ D
0 otherwise

(2)

Radon transform is robust to additive noise and some other
good geometric properties [29], which have been exploited in
different works [27], [30]–[33] of shape analysis. Tabbone et
al. [28] introduced a shape signature, called R-signature, for
an effective shape representation as follows.

Rf2(D, θ) =
∫ +∞

−∞
R2

f (θ, ρ)dρ (3)

Fig. 2 illustrates the R-signatures of two binary shapes. Please
refer to [28] for more illustrations about the robustness of R-
signature against additional noise and non-linear deformations.
Hereunder, we recall two properties of R-signature as follows.

• Periodicity: Rf2 is periodical with the period of π.
• Rotation: A rotation of the image by an angle θ0 leads

to a circular shift of Rf2 of θ0.
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Fig. 2. Illustration of R-signatures [28].

III. ROTATIONAL SYMMETRY DETECTION

A. Limitations of projection-based approaches

We point out the limitations of projection-based approaches
in the detection of rotation symmetry. The following analyses
address R-signature as an example, but they are also valid
for other projection-based methods which share the same
limitations because the projected features are the same after
a rotation of angle π. This prevents the detection of 2-order
rotation shapes with their angles of rotation π. Concretely, a
projection-based shape signature, such as R-signature, has the
following issues to detect rotational symmetric properties.

1) First, due to [28], R-signature (Rf2(D, θ)) is periodic
with respect to θ with period π thanks to semi-periodic
property of Radon transform. Therefore, a shape having
a rotation symmetry of angle π is not detected by
addressing cyclic symmetry in its R-signature.

2) Second, the cyclic period of R-signature does not always
correspond to the angle of rotation symmetry. For ex-
ample, if a shape has a rotation symmetry of angle 2π

3 ,
it must be the same after a rotation of 2 × 2π

3 = 4π
3 .

In addition, its R-signature is also cyclic periodic with
period π. It can be deduced that the R-signature of
this shape has a cyclic symmetry of period π

3 . Thus,
detecting the cyclic period of R-signature does not allow
determining the angle of rotation symmetry of a shape.
Figs. 3.(a)-(b) illustrate this example where the cyclic
period of its R-signature is not 2π

3 . In the meanwhile,
Figs. 3.(c)-(d) show a 4-order rotation shape with a cyclic
period of 2π

4 = π
2 as expected.

B. Novel framework based on projection of semi-shapes

The above limitations naturally come from the properties
of the projection-based approaches. Indeed, a projection is
only defined by its direction whilst its orientation is ignored.
Those would be the obstacles of using R-signature for a direct
application of rotation symmetry detection. To deal with these
problems, we propose hereunder a novel concept of semi-
shape projection to adapt R-signature for rotational symmetric
properties of an arbitrary shape.

Definition 1. A semi-shape of D in direction θ ∈ [0, 2π),
called ∝θ (D), is defined as a part of D which is on the left
side of the line in direction θ passing through D’s centroid.
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(a) A 3-order rotation shape (b) Its R-signature has a cyclic period of π
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(c) A 4-order rotation shape (d) Its R-signature has a cyclic period of 2π
4 = π

2

Fig. 3. The cyclic period of R-signature of a 3-order rotation shape is not
2π
3

while that of 4-order rotation shape is π
2

.
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210◦ 240◦ 270◦ 300◦ 330◦ 350◦

Fig. 4. Semi-shapes constructed from the shape in Fig. 3(a).

Fig. 4 presents a series of semi-shapes of a shape. From
this figure, we could make the following findings.

• D is rotationally symmetric with angle θ0 if and only if
∝θ (D) and ∝θ+θ0 (D) are identical, ∀θ ∈ [0, 2π)

• Generally, ∝θ (D) and ∝θ+π (D) are not the same.
The above findings allow us to address hereunder a new

approach for rotation symmetry detection. For the simplicity,
the interval [0, 2π) is quantified into 360 directions: Θ =
{0◦, 1◦, 2◦, . . . , 359◦}. Let us consider a signature of D, called
the profile of semi-shapes, as follows:

ζ(D,Θ) = {Rf2(∝θ (D), θ)}θ∈Θ (4)

Contrariwise to R-signature [28], the profile of semi-shapes
ζ(D,Θ) is not automatically cyclic symmetric with period
180◦ = π. In addition, if it contains cyclic symmetry with
period of θ0, D is also rotational symmetric with angle θ0.

Fig. 5 presents a study of rotation symmetry of shape in
Fig. 3(a), which is based on the profile of its semi-shapes
addressing 360 directions from 0◦ to 359◦ (see Fig. 5(a)).
It could be seen from this figure that the profile is cyclic
symmetric with a period of 120◦ = 2π

3 , instead of π
3 , as seen

by its R-signature (refer to Fig. 3(b)).
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Fig. 5. Detection of rotation symmetry.

C. Proposed method for rotation symmetry detection

Based on the analysis in the aforementioned sections, we
propose a new method for rotational symmetry detection of an
arbitrary shape D by considering the profile of its semi-shapes
ζ(D, θ0). The main idea is to measure the similarity between
it and its circular shift of each angle θ, i.e., ζ(D, θ+θ0). If this
similarity is perfect, we could confirm that the studied shape
has not been changed after a rotation function at its center
with the angle θ0. In order to measure the similarity between
ζ(D, θ0) and ζ(D, θ+θ0), we propose to use Pearson’s Linear
Correlation Coefficient (PCC) [34]. These correlation values
can range from –1 to +1, where a close-to-(+1) coefficient
indicates a perfect positive correlation.

To exploit the proposed idea, we introduce Algorithm 1
for rotational symmetry detection of an arbitrary shape D.
Accordingly, the profile of semi-shapes ζ(D,Θ) is constructed
to discover its rotational symmetric properties. The merit
profile is calculated from the correlation between ζ(D, θ0) and
each its circular shift of angle θ using Pearson’s correlation.
The peaks of this merit profile are detected and refined by
a threshold τ ∈ (0, 1). The number of peaks determines the
order of rotation symmetry while the intervals between these
peaks define the rotation order, and the mean of the detected
peaks is reported as the measure of rotational symmetry. A
MATLAB code demo for our proposed algorithm can be found
at http://tpnguyen.univ-tln.fr/download/ICPR2022Rota.

IV. EXPERIMENTS

A. Synthetic shapes

We first conduct experiments of synthetic shapes to ver-
ify the proposed rotational symmetry measure. Three syn-
thetic subsets are considered for this purpose (see Fig. 6).
Therein, subset S1 consists of rotational symmetric shapes
generated from regular polygons. S2 includes the deformed
shapes created from S1 by addressing heavily additional noise
(SNR = 1). S3 contains shapes of non-regular polygons.

Fig. 7 shows some representative experiments on synthetic
shapes. The line (a) (resp. (b), (c)) presents a shape of S1 (resp.
S2, S3) along with the profile of its semi-shapes and merits
of rotation symmetry. This allows making several findings as
follows. Thanks to the robustness of the profile of its semi-
shapes against non-linear deformations, the corresponding
merit of rotation symmetry is also robust against them (see
lines (a) and (b) of Fig. 7). For the non-rotational symmetric
shape (see line (c)), its profile does not contain any cyclic
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Subset S1 Subset S2 Subset S3

Fig. 6. Subsets of synthetic shapes.

Algorithm 1 Rotational symmetry detection of a shape D.
Input: D – an arbitrary shape, τ – a refining threshold.
Output: ψ – rotational symmetric measure, θ0 – the angle of
rotation

1: Determine the centroid CD of shape D
sX =

∑

p∈D
px; sY =

∑

p∈D
py; s =

∑

p∈D
1; CD = ( sXs ,

sY
s )

2: Decompose D into semi-shapes based on the interval Θ ∈
[0, 2π) and its centroid CD

3: Calculate the profile of semi-shapes ζ(D,Θ)
4: merit = [ ];
5: for θ = 1◦ . . . 359◦ do
6: merit(θ) = Ω(ζ(D, 0◦), ζ(D, θ));
7: end for
8: Detect dPeaks ≥ τ ; //the positive peaks of merit.
9: if length(dPeaks) > 0 then

10: Determine ψ = dPeaks;
11: θ0 = 360/length(dPeaks);
12: else
13: ψ = 0; //No symmetry found.
14: end if

Input shape Profile of its semi-shapes Merits of rotation symmetry
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Fig. 7. Rotational symmetry measures ψ are 0.9913 and 0.9664 for shapes
(a) and (b), while 0 is for shape (c).

periods. That means its rotational symmetry measure is 0 since
the merit profile does not contain any positive peaks.

B. Evaluations of rotational symmetry detection

1) Detecting on single-contour shapes: MPEG-7 [26] is a
conventional collection consisting of 1400 binary shapes of
different objects for various analysis techniques, e.g., shape
matching, shape description, etc. Initially, MPEG-7 is not
aimed at tasks related to the rotational symmetry detection

GT 5 orders 5 orders 4 orders 3 orders

(a) (b) (c) (d)
Aguilar #order ∈ #order ∈ #order ∈ #order ∈
et al. [23] {2, 4} {2, 4} {2,4} {2, 4}
Ours θ0 = 72◦ θ0 = 72◦ θ0 = 90◦ θ0 = 120◦

#order = 5 #order = 5 #order = 4 #order = 3

GT 5 orders 8 orders 5 orders 4 orders

(e) (f) (g) (h)
Aguilar #order ∈ #order ∈ #order ∈ #order ∈
et al. [23] {2, 4} {2, 4,8} {2, 4} {2,4}
Ours θ0 = 72◦ θ0 = 45◦ θ0 = 72◦ θ0 = 90◦

#order = 5 #order = 8 #order = 5 #order = 4

Fig. 8. Our results on MPEG-7’s shapes compared to those of Aguilar et al.
[23]. GT is a number of the ground-truth orders of shapes.

until Aguilar et al. [23] recently addressed it for their contour-
based shape representation by using the Slope-Chain-Code
(SCC) theory [24], [25] in order to represent the curve of
binary shapes. This is because they realized that some MPEG-
7’s shapes have different orders of rotational symmetry, which
are suitable for evaluating the performance of detectors.

Accordingly, we will evaluate the performance of our pro-
posed detector on detecting the orders of these single-contour
shapes in comparison with that of Aguilar et al. [23]. To
this end, let us empirically consider the refining threshold
τ = 0.85 of our Algorithm 1 for detecting the orders of
rotationally symmetrical shapes in MPEG-7 [26]. For the SCC-
based representation, we follow the best parameters reported
by Aguilar et al. [23], i.e., M = 60, ϵ = 0.15, κ = 0.82, and
ρ = 0.1, except Ω ∈ {2, ...,M}. It should be noted that we
set such Ω’s values so that the SCC-based detector [23] can
reach as many orders as possible. The function of the others
could be referred to their work for more detail.

It can be observed in Fig. 8 that our proposed detector
could efficiently detect all rotationally symmetrical shapes, as
visualized in the red lines. Indeed, our algorithm correctly
pointed out the orders and the rotation-symmetry angle of
all shapes, including the deformation ones, i.e., shapes (b)-
(e) in Fig. 8. In the meanwhile, the SCC-based one [23] just
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#order = 5 #order = 5 #order = 5 #order = 5 #order = 5

#order = 5 #order = 5 #order = 5 #order = 5 #order = 5

#order = 5 #order = 5 #order = 5 #order = 5 #order = 5

#order = 5 #order = 5 #order = 6 #order = 8 #order = 8

#order = 3 #order = 3 #order = 3 #order = 3 #order = 3

#order = 3 #order = 4 #order = 4 #order = 10 #order = 10

Fig. 9. Our results of orders on other MPEG-7’s shapes.

listed their possible orders. It is noteworthy that in these output
lists, the odd number of orders of the shapes was not in (see
the results of shapes (a), (b), (d), (e), and (g) in Fig. 8). It
means that the SCC-based detector has been in difficulty of
the determination. In other words, it has failed in detecting the
rotational symmetry properties on these shapes. More order
results of our effective detection on other MPEG-7’s shapes
can be found in Fig. 9.

2) Detecting on compound-contour shapes: To the best
of our knowledge, there is no dataset of compound-contour
binary shapes for evaluating the rotational symmetry detectors.
Therefore, we would like to collect 58 compound binary
shapes from Internet (see Figs. 10 and 12). For this assessment,
we also follow the same parameters, which were addressed for
the aforementioned experiments on the single-contour shapes
for the both detectors, i.e., ours and the SCC-based one [23].

It can be observed in Fig. 10 that our proposed detector also
did well on all compound shapes (i.e., visualized in the red
lines), while the SCC-based one [23] did not. Indeed, while
ours pointed out the correct number of orders and the rotation
angle of these shape, the SCC-based detector reported a list
of possible orders. It should be noted that none of orders of

GT 8 orders 4 orders 8 orders 5 orders

(a) (b) (c) (d)
Aguilar #order ∈ #order ∈ None of None of
et al. [23] {2, 4,8} {2,4, 8, 16} #order #order

Ours θ0 = 45◦ θ0 = 90◦ θ0 = 45◦ θ0 = 72◦

#order = 8 #order = 4 #order = 8 #order = 5

GT 8 orders 6 orders 4 orders 4 orders

(e) (f) (g) (h)
Aguilar None of None of #order ∈ #order ∈
et al. [23] #order #order {2,4} {2}
Ours θ0 = 45◦ θ0 = 60◦ θ0 = 90◦ θ0 = 90◦

#order = 8 #order = 6 #order = 4 #order = 4

Fig. 10. Our results on compound shapes compared to those of Aguilar et
al. [23]. GT is a number of the ground-truth orders of shapes.

Fig. 10(a) Fig. 10(b) Fig. 10(c) Fig. 10(d)

Fig. 11. Plots of SCC-based segments of the compound shapes (a), (b), (c),
and (d) in Fig. 10, respectively.

shapes (c), (d), (e), and (f) in Fig. 10 was detected because
of the limitation of the contour-based analysis, which will be
discussed thoroughly in the below sub-section. More results
of our effective detector on other compound shapes and those
with a large number of orders can be found in Fig. 12.

3) Inadequacy of the contour-based analysis: Based on the
experiments, we could assert the drawback of the contour-
based detector [23] when facing with the compound shapes.
Figs. 8 and 10 illustrate that the detector [23] only worked
on the single-contour shapes, while ours did well on both. It
is obvious that the contour-based detector has mostly failed
on the compound shapes because of its inherent properties
based on the SCC theory [24], [25] in the shape analysis. More
concretely, the SCC-based algorithm has not well done due to
the fact that it could not detect and represent all separate curves
of the compound-contour shapes. It has practically formed one
of the disjointed curves, i.e., a contour part of these shapes.
Indeed, Fig. 11 illustrates that only one part of shapes (a), (b),
(c), and (d) in Fig. 10 was segmented for the shape analysis.
As a result, the SCC-based detector [23] had only addressed
the outer contour of shapes (a) and (b) for its detection process.
Here, there was an accidentally correct detection for shape (a)
in Fig. 10 because of its inner circle-contour with notorious
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#order = 8 #order = 3 #order = 8 #order = 8 #order = 8 #order = 4 #order = 6 #order = 6 #order = 12 #order = 8

#order = 4 #order = 5 #order = 3 #order = 4 #order = 2 #order = 6 #order = 8 #order = 8 #order = 3 #order = 6

#order = 3 #order = 4 #order = 4 #order = 4 #order = 8 #order = 6 #order = 4 #order = 3 #order = 8 #order = 4

#order = 6 #order = 4 #order = 4 #order = 5 #order = 5 #order = 5 #order = 6 #order = 3 #order = 5 #order = 6

#order = 12 #order = 3 #order = 36 #order = 6 #order = 3 #order = 4 #order = 3 #order = 3 #order = 3 #order = 4

Fig. 12. Our detection results on other compound shapes and those with a large number of orders.

rotation-symmetry of myriad orders. In addition, the contour-
based detector [23] has been arduous in handling the complex
and decorative shapes (c) and (d) in Fig. 10 since just one part
of its contour was located and segmented. Consequently, all
the above analyses have validated the efficacy of our proposal.

C. Assessments of computational complexity

In regard to Algorithm 1, the proposed detector generally
takes four main steps to detect the rotational symmetry of an
arbitrary N × N shape D. The complexity of determining
the centroid of D is estimated as QCD ≈ O(N 2). The com-
plexity of the decomposition of D into semi-shapes ζ(D,Θ)
is QSD = |Θ| × N × N , where |Θ| means the number of
decomposing directions, i.e., |Θ| = 360 in this case. Comput-
ing the profile of semi-shapes ζ(D,Θ), based on the Radon
transform, takes QζD = |Θ|×QR, where QR ≈ O(N 2logN )
denotes the complexity of the Radon transform (refer to [35]
for estimations in detail). The detection and verification of
rotational symmetry are done in QVD ≈ O(|Θ|+N ). It should
be noted that |Θ| = 360 can be omitted because it is a constant
value. Consequently, the complexity of our proposed detector
is estimated as Qoverall ≈ max(QCD ,QSD ,QζD ,QVD ), i.e.,
Qoverall ≈ O(N 2logN ), compared to O(Ω2M2) of the SCC-
based one [23]. In terms of computation time, it takes only 2.1s
for our proposed detector to detect a rotationally symmetric
512 × 512 shape of MPEG-7 [26], while the SCC-based one
needs up to 43.79s. All these time results are reported by the

rough MATLAB codes on a Windows 10 64-bit laptop with
core i7 2.6GHz and 16GB RAM.

V. CONCLUSIONS

We have proposed an effective method for rotational sym-
metry detection based on a novel concept of the semi-shape
projection which allows constructing a profile of semi-shapes
describing rotational symmetric properties of an arbitrary
shape. Also, a new measure of rotational symmetry has been
introduced to determine how good the rotational symmetry de-
tection would be. Experiments on the single/compound binary
shapes have validated the better performance in comparison
with the recent work of Aguilar et al. [23]. In addition,
based on the projection approach, our proposed algorithm
can naturally deal with the compound shapes that are not
evident for the existing contour-based method. This article is
for the very first results on our research line. For perspectives,
we will completely present the basic theories of the semi-
shape projection as well as adequate assessments for rotational
symmetry detection compared to the state of the art.
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[35] W. A. Götz and H. J. Druckmüller, “A fast digital radon transform–an
efficient means for evaluating the hough transform,” Pattern Recognition,
vol. 29, no. 4, pp. 711–718, 1996.

Accepted by ICPR’2022

7


