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Abstract

Embedding attention modules into deep convolutional neural networks (CNNs) is
currently one of the common deliberations to enhance their learning ability of fea-
ture representation. In previous works, the global channel-wise patterns of a given
tensor are computed and squeezed into CNN-based models through an attention
mechanism. Squeezing different kinds of these features can lead to the less fusion
of attentive information due to the independent operations of channel-wise recal-
ibration. To deal with this issue, an efficient attention module of accumulated
features (MAF) is proposed by accumulating these diverse squeezes for a uni-
tary recalibrating perceptron as follows. Firstly, we take advantage of average
and deviation calculations to produce correspondingly statistical patterns of a
given tensor for aggregating the global channel information. An adaptative per-
ceptron of deformed-bottleneck recalibration (DBR) is then presented to cohere
the resultant features. Finally, the robust DBR-based lightweights will be uti-
lized to weight the concerning tensor. Additionally, to exploit more spatial-wise
information, we address MAF for an effective alternative of the channel-wise
component in two critical attention units to form two corresponding modules
that will be then inspected to indicate which integration is good for real applica-
tions. We adapt the MAF-based modules to MobileNets for further enhancement
investigation. Experiments on benchmark datasets for image classification have
proved the efficacy of our proposals. The code of the MAF module is available at
https://github.com/nttbdrk25/MAFAttention.
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1 Introduction

Deep CNN-based architecture is one of the various powerful learning techniques to deal
with diverse assignments in computer vision such as image classification [1–4], object
detection [5–9], semantic segmentation [10–13], semantic segmentation [11, 13–15],
real-life issues [16–20], etc. Indeed, inspired by the impressive performance of AlexNet
[1], researchers have introduced various productive network architectures in deeper and
wider learning layers which are stacked by multi-convolutional blocks for informative
representation. For popular instances, VGGNet [21] consists of 16 or 19 layers, twice
more layers than AlexNet. The large architecture of ResNet [22] can go with up to
1202 layers that are adapted with residual connections to improve the gradient flow.
GoogLeNet [23] is also structured by very deep layers for forceful representation with
diverse feature concatenations that are obtained by addressing various sizes of filtering
kernels for a convolutional block. DenseNet [24] exploits the concatenations of feature
maps computed from different layers. Recently, several miniature networks with small
computing layers have been presented to be adaptative for mobile devices, whose
computational resources have been restricted, e.g., MobileNet-based models [25–29],
factorized CNNs [30], MnasNet [31], EfficientNet [32], Xception [33], and ShuffleNet
[34]. etc. For light hyper-parameters, most of them are usually designed by allocating
depthwise and pointwise convolutions.

In order to direct the CNN-based networks to concentrate on the important
information instead of learning on the useless backgrounds, many feature-attention
approaches have been proposed by hooking slight attention models on their architec-
ture to enhance the learning ability. These attention propositions have to ensure that
the model complexity of the obtained networks is still at a reasonable level in compari-
son with the baseline ones. Indeed, Hu et al. [35] introduced a Squeeze-and-Excitation
(SE) block with a lightweight gating mechanism to exploit the global average-pooled
features of a given tensor X for enhancing the representational power of deep CNN-
based networks. Motivated by this attention mechanism, several methods have been
introduced to take advantage of the spatial/channel-wise patterns of X such as Convo-
lutional Block Attention Module (CBAM) [36], Bottleneck Attention Module (BAM)
[37], Style-based Recalibration Module (SRM) [38], Efficient Channel Attention (ECA)
[39], etc. Some of them [37, 39] just address one squeezing kind of global channel-
wise features, leading to lack of attentive information for image representation. In the
meanwhile, some others [36, 38] take into account two kinds of squeezes. However, their
squeezing process for weightable values can lead to less attentive information because
their interval recalibration is handled independently for an aggregating operation of
global channel-wise patterns.

Addressing the above problems, an efficient Module of Accumulated Features
(MAF) is proposed in this work to accumulate two diverse squeezes for a unitary
recalibrating perceptron. For a given tensor X, two squeezes of its global average
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and standard-deviation features are taken into account for accumulating the global
channel-wise information. An adaptative perceptron of deformed-bottleneck recalibra-
tion (DBR) is then introduced to cohere the resultant squeezes in order for producing
robust lightweights embedded into the concerning tensor X. Finally, the MAF-based
features will be computed and delivered to MobileNets for informative enhancement
in image representation. The proposed MAF module will make the model complexity
of the MAF-based networks trivially increase in comparison with that of the baseline
ones, while the performance is better. It should be noted that our accumulative mech-
anism is different from that of CBAM [36] and SRM [38]. CBAM [36] just addresses
a simple element-wise summation of two global descriptors computed by two discrete
SE-based operations, while SRM [38] utilizes a channel-independent fully connected
layer for each channel-wise squeeze. Thanks to the proposed DBR perceptron, MAF
can make an attentive fusion of the global features at the learning stage of the adap-
tive recalibration. This allows the MAF-based networks to boost their discriminative
representation when learning the nonlinear interaction of their channels. In addition,
in order to take advantage of the extra spatial-wise information, we locate MAF as an
efficient alternative of the channel-wise component in two particular attention mod-
ules (i.e., CBAM [36] and BAM [37]) to form two corresponding modules (named
MAFC and MAFB respectively). We then investigate them to find out which integra-
tion is better for real applications. Experiments for image classification on benchmark
datasets have proved that the MAF-based networks obtain better results compared
to the baseline ones as well as other attention-based methods. In short, the main
contributions of this work can be summarized as

� An efficient accumulation to simultaneously unify two squeezing kinds of global
channel-wise patterns.

� A unitary recalibrating perceptron to effectively exploited diverse squeezes for
producing robust lightweights.

� Investigating alternatives of MAF for the channel-wise component of two particular
attention modules.

� MobileNets adapted with MAF-based features obtain good performances in com-
parison with the baseline ones as well as other attention methods.

2 Related works

2.1 Squeeze-and-excitation attention mechanism

To enhance the representation power of deep CNN-based networks, one of the main
approaches is to hook some sub-models on several layers of their architecture so that
they can concentrate on the important properties instead of the fewer ones, while the
architecture complexity of the hooked networks reasonably increases in comparison
with the baseline ones. To this end, Hu et al. [35] introduced a squeeze-and-excitation
(SE) attention block to concentrate on the selective channel-wise information of a
given tensor while passing over the less useful features. Indeed, let X ∈ RH×W×C be
an input tensor. The SE block is built as a computational block to transform zi ∈ X
to z̃i ∈ X̃ by addressing the global channel-wise information extracted from X. In
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general, the transformation can be defined subject to a volume of attention weights
W ∈ RH×W×C as

Ψ : X → X̃, z̃i = Ψ(zi) = ωi ⊙ zi (1)

where X̃ ∈ RH×W×C ; ⊙means a binary operator to embed a lightweight value ωi ∈ W
into a tensor element zi ∈ X.

2.2 SE-based attention modules

Thanks to a lightweight gating mechanism, the SE block [35] has been taken into
account global average-pooled features for enhancing the representational power of
GoogLeNet [23] and ResNet [22]. Motivated by this attention mechanism, Lee et al. [38]
introduced SRM to utilize squeezes of average and deviation features with a channel-
independent fully connected layer for each squeeze. CBAM [36] exploited both global
average-pooled and max-pooled informative features for the separate SE-based oper-
ations. Then the channel-refined tensor was spatially averaged and maximized before
feeding the computed spatial information into a slight convolutional block for extract-
ing spatial attention features. BAM [37] was proposed to learn the integration of the
global average-pooled features and the spatial information that were computed by a
SE-based operation and a dilated convolutional function [40], respectively. Wang et al.
[41] took into account the non-local algorithm (NL) [42] to build an attention module
of NL blocks. Motivated by this non-local concept, Chen et al. [43] introduced dou-
ble attention networks (A2-Nets) by aggregating and propagating the spatio-temporal
informative features of input images/videos. Fu et al. [44] addressed simultaneously
NL-based channel and spatial information for attention mechanism. Cao et al. [45]
combined the optimal implementation of a simplified NL block and a SE block to
form a global context (GC) block for an improvement, while a non-local spatial atten-
tion module (NL-SAM) [46] was proposed by a combination of NL-block concept and
CBAM [36]. In other attention approaches, Hu et al. [47] proposed a Gather-Excite
(GE) module to aggregate the contextual information of feature maps. Two spatial
pooling stages of rich descriptor extraction and information fusion [48] were formed
to take into account more globally informative cues absorbed by a fusion step for
a powerful channel characteristic. Wang et al. [39] introduced an ECA module for
local cross-channel interaction by addressing fast 1D convolution with 1D kernels of
neighbors to hold channel dimensionality when learning the global average-pooled
information of an input tensor. A Selective Kernel (SK) block [49] brought the feature-
map attention across two convolutional branches, while Zhang et al. [50] proposed
a general model of SE and SK blocks, called Split Attention (SA) that was acceler-
ated by grouped convolutions for cardinal representations. Other noticeable attention
modules are inferred as FcaNet [51]: multi-spectral channel attention based on various
frequency components; SimAM [52]: a SIMple parameter-free Attention Module for
full 3-D weights; Attention Augmented convolution (AA) [53]: an attentive mechanism
for jointly serving to spatial and feature subspaces; Pyramid Squeeze Attention (PSA)
[54]: splitting the channels of a given tensor into branches for grouped convolutions.
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Fig. 1 An intuitive illustration of the proposed module of accumulated channel-wise features (MAF).

3 A productive accumulation of global features

The channel-wise lightweights of SE-based attention modules [36, 38] can lack adhe-
sive information representations due to the independent recalibration of squeezes. To
mitigate this deficiency, we propose a module of accumulated features (MAF) with
an efficient accumulating operation to fuse two kinds of channel-wise statistical infor-
mation. Fig. 1 graphically illustrates the attentive mechanism of MAF. It includes
three main stages: i) Squeezing the global average (SGAP ) and standard deviation
(SGSD) features of a given tensor; ii) A perceptron of deformed-bottleneck recalibra-

tion (DBR) for the squeezed output (S̃acus) to produce a robust lightweight volume;
and iii) Feature attention with DBR-based lightweights. Hereafter, these stages will
be presented in detail.

3.1 Squeezing global channel-wise patterns

In the previous attention modules [36, 38], light-weights are extracted from learning
two squeezes of global channel features in two normal ways: i) a separate recalibration
for each squeeze and ii) a simple element-wise summation of two squeezes. These
operations can lead to the less fusion of attentive information. Addressing this issue,
we propose an efficient accumulation of two global channel squeezes for a unitary
perceptron of recalibration. In this section, we present the corporation of average and
deviation squeezes, while the unitary recalibration will be mentioned in Section 3.2.

Average squeeze: As mentioned in the SE block [35], the statistic feature of
global average pooling (named SGAP (X) ∈ R1×1×C) is computed by considering the
corresponding spatial planes of tensor X as

SGAP (ξc ∈ X) =
1

N
∑
x∈ξc

f(x) (2)

where ξc denotes the cth channel of X; f(.) returns a specific feature map value of a
2D point x ∈ ξc; N = H ×W means the number of 2D points of ξc.
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Deviation squeeze:Motivated by [38, 55], subject to SGAP (X), we calculate another
type of channel-wise statistic pattern in consideration of the global standard deviation
(named SGSD(X) ∈ R1×1×C) of each spatial plane ξc of tensor X as

SGSD(ξc ∈ X) =

√
1

N
∑
x∈ξc

(
f(x)− SGAP (ξc)

)2

(3)

In order to capture diversity of contextual information, these two squeezes will be
concatenated to obtain an accumulated squeeze (ACUS) of the given tensor X as

S̃acus(X) =
[
SGAP (X), SGSD(X)

]
(4)

It can be seen that S̃acus ∈ R1×1×2C has a double size in comparison with the tra-
ditional squeezes of global channel features (i.e., SGAP or SGSD) addressed for the
previous SE-based attention modules [35–39]. So it is necessary to take a favorable

recalibration for the informative fusion of S̃acus. A such adaptative perceptron will be
proposed and presented hereafter.

3.2 A perceptron of deformed-bottleneck recalibration

As well known, the previous SE-based modules [35–37] utilized a bottleneck excitation
for recalibrating a 1× 1× C block of squeezed information (e.g., SGAP , SGSD, etc.),
where a reduction ratio is allocated to control the sharp increase of #parameters.
Definitely, this initial bottleneck shape is not suitable for recalibrating our accumulated
squeeze S̃acus due to the double dimension i.e., 1× 1× 2C. Like the conventional
squeezes, S̃acus is purely a collection of discrete channel-wise patterns. To make them
fused-dependent, it needs a learning process to perceive the nonlinear interactions
between channels. To this end, we propose a deformed bottleneck recalibration (named

DBR) to capture the fused dependencies of diverse channel features gathered in S̃acus.
The DBR perceptron consists of two fully connected layers with a non-linear function
between them. The first layer is for a dimensional reduction with learnable parameters
Ω1 ∈ RC

r ×2C , where r denotes a reduction ratio. In the meanwhile, the second layer
with Ω2 ∈ RC×C

r is for an expansion so that the output would be formed in 1× 1× C
dimension to be agreed with a scale calculation with the input tensor X (see Fig. 1).
In short, the DBR perceptron can be rewritten as

Wacus = Eacus(Ω, S̃acus) = η
(
Ω2γ(Ω1S̃acus + b1) + b2

)
(5)

where η(.) is a sigmoid function; b1 ∈ RC
r and b2 ∈ RC are biases. The non-linear

function γ(.) denotes activation ReLU [56]. As defined in Eq. (5), it can be deduced

that the total number of the learnable parameters for DBR is 3C2

r in the case of ignor-
ing the biases. It is a negligible quantity compared to other channel-wise components,

e.g., 2C2

r of SE [35] and BAM [37]; or 4C2

r of CBAM [36] (refer to Table 3 for specific
estimations). The aforementioned ratio r plays the same role of dimensional reduc-
tion in the SE-based modules. It can be referred to [35] for further information about
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various investigations of the influence of r. Accordingly, the reduction ratio should be
set to r = 16 for a good trade-off between the accuracy and the increase of the model
complexity. For objective evaluations, we utilize this ratio value for the proposed DBR
perceptron and other SE-based ones [36, 37] in the below experiments.

3.3 Embedded features with DBR-based lightweights

As mentioned above, the proposed DBR perceptron can take advantage of the accu-
mulated squeeze (S̃acus) for robust lightweights (Wacus). According to Eq. (1),

MAF-based feature maps X̃MAF can be pointed out by embedding Wacus into the
given tensor X, where each channel ξc ∈ X will be correspondingly weighted with
each ωc ∈ Wacus as

X̃MAF = Wacus ⊗X : each channel ξ̃c ∈ X̃MAF, ξ̃c = ωc ⊗ ξc (6)

Therein, “⊗” denotes an element-wise multiplication operator (see Fig. 1 for an
intuitively illustration of this calculation).

4 Beneficial properties of MAF module

4.1 Extracting robust lightweights for attention mechanism

It can be deduced that the proposed MAF module can produce robust lightweights
for attention mechanism in comparison to other modules. It is thanks to three main
properties as

� Two kinds of global channel features (SGAP and SGSD) are extracted in MAF
instead of only one done in [35, 37, 39].

� All these global features will be joined to form an accumulated squeeze S̃acus, instead
of being considered as separate squeezes in CBAM [36] and SRM [38].

� An efficient DBR perceptron is proposed to recalibrate the accumulated squeeze
S̃acus for robust lightweights.

Furthermore, it should be noted that the proposed DBR-based recalibration is different
from SRM [38]. Indeed, both SGAP and SGSD are also addressed for attention-weight
calculation in SRM [38]. However, the separate recalibration of SRM can lead to
the less fused coherence of global channel features because a channel-independent
fully connected layer was applied for each channel-wise squeeze. Empirical evaluations
in Section 6.2.1 have validated the effectiveness of the unified information Wacus

in comparison with SRM and other channel-wise-based modules. Additionally, our
accumulative mechanism will make a solid fusion of channel-wise statistics, while the
CBAM block [36] is designed with two discrete SE-based operations and then a pure
element-wise summation is applied for two corresponding outputs (see Section 6.2.2
for evaluations in detail).
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Fig. 2 A MAFC attention, where the dash arrows indicate the spatial computation of CBAM [36].

4.2 An efficient alternative for channel attention

As presented in Section 3, it can be seen that the proposed MAF block is intended
for exploiting the accumulated channel-wise information of a given tensor. Meantime,
several recent approaches [36, 37, 57] indicated that the spatial-wise characteristics of
X also have an important contribution in boosting the performance. So we would like
to inherit their spatial computation to enrich more attentive features. To this end,
we propose an efficient replacement for the channel-wise component of two particu-
lar CNN-based attentions, i.e., CBAM [36] and BAM [37]. Concretely, we will replace
their channel-wise computation with our MAF to form efficient attention modules,
whose weightable features for X are simply conducted by making an element-wise
product between the MAF-based values and the spatial ones of CBAM and BAM.
As a result, we obtain two spatial-channel feature blocks, named MAFC and MAFB

correspondingly. Figs. 2 and 3 illustrate the adaptative substitution of MAF for chan-
nel attention, where the blurred shapes denote the inherited spatial computation. It
should be noted that when the SGSD operation of MAF is addressed for the channel-
wise computation of MAFC, the corresponding SGSD-based spatial features would be
taken into account, instead of the maximum-spatial ones of CBAM [36]. Experiments
have verified that MAFC and MAFB can obtain better performance in comparison
with the original modules [36, 37], while controlling the computational complexity of
the corresponding MAF-based networks to be reasonable (see Section 6.2 for more
evaluations).

5 Adapting MAF-based attentions to MobileNets

As well known, depthwise and pointwise convolutions are two main operators that are
used to design slight layers with a trivial number of trainable parameters for small neu-
ral networks [27, 33, 34]. In MobileNets, these light-weight operators are gathered into
CNN-based groups: blocks of depthwise separable convolutions (DSC) in MobileNetV1
[25] or linear bottleneck blocks (LBN) in MobileNetV2 [26] and MobileNetV3 [27].
These tiny networks are potential solutions for applications of mobile devices. So
we would like to integrate our MAF-based features into their architecture to inves-
tigate the efficiency of the proposed MAF-based modules. Accordingly, the output
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Fig. 3 A MAFB attention module, where the dash arrows indicate the spatial computation of BAM
[37].

⊕
denotes an element-wise summation.

Attention

Accumulated Attention

Fig. 4 Illustration of weighting the accumulated MAF-based features for a given tensor X, which
is an output of a DSC-based block of MobileNetV1 [25] or a LBN-based block of MobileNetV2 [26]
and MobileNetV3 [27].

⊕
denotes an element-wise summation.

of the DSC/LBN blocks will be weighted by either the MAF information or the
MAFC/MAFB features to find out which attentive integration is better and potential
for real applications. Fig. 4 intuitively illustrates the weighting process of the accu-
mulated MAF-based features for a given DSC/LBN-based tensor X in MobileNets. It
should be noted that because Howard et al. [27] embedded the SE block [35] in the
initial architecture of MobileNetV3, we will remove it and take the location for the
proposed MAF-based ones. The implementation code of the MAF-based networks is
available at https://github.com/nttbdrk25/MAFAttention.

6 Experiments and evaluations

6.1 Parameter settings and datasets

To thoroughly investigate the efficiency of MAF-based attention mechanisms, we
address them for different architectures of MobileNets, i.e., width-multiplier =
{x0.25, x0.5, x0.75, x1.0}. The aforementioned MAF-based networks will be trained
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and evaluated for image classification tasks on the following datasets with general
learning arguments: a SGD optimizer with momentum = 0.9; initial learning-rate
lr = 0.1; weight-decay = 10−4. Other learning settings will be allocated subject to the
particular properties of each dataset for objective comparisons.

CIFAR-10/100 [58] consists of two subsets of 60k 32× 32 color images: CIFAR-
10 with 10 categories; and CIFAR-100 with 100 categories. Each subset includes 50k
images for the training stage and 10k images for the testing one. Following the settings
in [22, 29, 59] for both subsets, we train the proposed MAF-based networks for 200
epochs with 128 training instances in each batch. The initial learning rate (lr = 0.1)
will be decayed by a factor of 0.1 at epochs: 100, 150, and 180. To avoid the overfitting
problem, the augmentations in [22, 59] will be addressed so that the training instances
are randomly augmented by horizontal flips and shifts by up to 4px.

ImageNet-1k [60] is a challenging large database. It includes 1000 categories of
scene images. For the image classification task, 1.28 million images are taken for the
training stage and 50k for the validating one. Following [29, 36, 37], we train the
proposed MAF-based networks on a set of cropped 224 × 224 images for 100 epochs
with 256 training instances in each batch. The initial learning rate (lr = 0.1) will
be decayed by a factor of 0.1 at epochs: 30, 60, and 90. The augmenting transforms
will be applied as follows: scaling images into dimension of 256 × 256 and randomly
cropping the output images for 224× 224; horizontal flips.

ImageNet-100 was introduced in 2020 by Tian et al. [61]. It is constructed by
randomly taking out 100 classes of ImageNet [60] for evaluating the image classification
ability of contrastive learning models. In this work, we would like to take into account
for validating light-weight models. We address the same learning settings as done on
ImageNet-1k to train the MAF-based networks.

Stanford Dogs [62] is composed by gathering dog images and their corresponding
annotations from those of ImageNet [60]. It has over 20k images that are categorized
into 120 breeds of dogs with 12000 images for the training stage and 8580 for the
testing one. Subject to the experimental scenario of Haase and Amthor [29], we train
the MAF-based networks for 200 epochs with 64 training images in each batch. The
learning rate (lr = 0.1) will be decayed by a factor of 0.1 at epochs: 100, 150, and 180.
The augmenting transforms will be applied as the same on ImageNet-1k with color
jitter [1].

6.2 Efficiency analysis of MAF-based attentions

To objectively compare the efficiency of the proposed MAF-based attentions with oth-
ers, we would like to deploy several recent spatial-channel attentions on MobileNets
with the same parameter settings, as mentioned in Section 6.1. Without feature atten-
tion, we implement and report the results of the original MobileNets. For modules
with only channel-wise patterns, we address SE [35], SRM [38], and ECA [39]. For
both spatial-wise and channel-wise, CBAM [36] and BAM [37] will be considered. It
should be noted that there is an SE module [35] with the reduction ratio r = 4, which
is embedded in the initial model of MobileNetV3. So we will simply replace it with the
compared modules with r = 16 for objective evaluations. For convenient presentation,
we would like to refer to the MobileNets’ versions by short names: V1 for MobileNetV1
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Table 1 Top-1 accuracy (%) with different attention modules on CIFAR-10/100.

MobileNetV1 MobileNetV2 MobileNetV3

Dataset Attention (x0.25) (x0.50) (x0.75) (x1.0) (x0.25) (x0.50) (x0.75) (x1.0) (x0.25) (x0.50) (x0.75) (x1.0)

CIFAR-10

No Attention 90.96 92.46 93.21 93.76 89.60 92.64 93.40 94.06 90.70 92.81 94.10 94.08

C
h
an

n
el

SE [35] 91.29 92.93 93.61 94.22 90.06 92.48 93.75 94.06 90.63 92.94 93.70 94.08

SRM [38] 91.49 93.66 94.14 94.26 89.35 92.54 93.60 94.46 90.53 92.43 93.57 94.13

ECA [39] 91.82 93.25 93.40 94.04 89.05 92.59 93.65 94.11 89.87 93.01 93.74 94.21

MAF 91.40 93.70 93.96 94.53 89.83 92.78 93.61 93.98 90.79 93.33 93.87 94.30

C
h
a
n
n
el
+
S
p
a
ti
a
l

CBAM [36] 91.22 92.84 93.73 93.98 90.09 93.00 93.62 93.63 90.56 92.55 93.75 93.97

MAFavg max
C 91.55 93.56 93.98 94.29 90.35 92.76 93.83 93.76 90.75 92.69 93.66 94.13

MAFavg std
C 91.65 93.50 94.24 94.35 90.35 93.02 93.88 93.86 89.26 92.61 93.80 94.21

BAM [37] 91.18 93.08 93.34 93.68 90.64 92.75 93.56 93.94 90.68 93.29 93.89 94.22

MAFB 91.23 92.73 93.57 93.63 90.09 92.83 93.69 94.13 90.77 93.31 93.95 94.38

CIFAR-100

No Attention 68.08 71.85 73.97 74.27 69.12 72.50 73.30 74.38 67.50 71.52 72.20 73.40

C
h
a
n
n
el

SE [35] 69.69 73.28 74.63 75.37 69.31 72.37 73.52 74.47 67.01 71.63 73.71 74.36

SRM [38] 68.81 72.86 73.83 75.08 65.79 71.98 74.07 74.66 67.24 72.05 73.03 73.61

ECA [39] 68.39 71.72 73.33 73.96 66.97 70.93 72.82 73.41 67.49 71.74 72.51 73.05

MAF 70.29 73.56 75.87 75.95 70.29 72.66 74.74 74.82 67.88 72.28 74.07 74.65

C
h
a
n
n
el
+
S
p
at
ia
l

CBAM [36] 67.86 72.50 74.11 74.98 68.95 71.54 73.51 73.39 67.99 72.51 73.89 73.70

MAFavg max
C 69.62 72.76 75.06 75.72 68.12 72.36 74.42 75.31 67.89 72.50 73.89 74.64

MAFavg std
C 70.15 74.07 75.45 76.17 67.32 72.63 74.46 75.95 68.07 72.28 74.09 75.14

BAM [37] 68.96 72.74 74.86 75.07 68.00 73.10 74.49 75.59 67.69 72.84 74.05 75.06

MAFB 69.13 73.65 75.81 75.94 69.15 73.12 74.69 75.67 67.86 73.12 74.66 75.44

Note: Numbers in parentheses indicate different width multipliers for model reduction of MobileNets.

(a) Performances on Stanford Dogs (b) Performances on ImageNet-100

Fig. 5 Performances of MobileNetV1 addressing the proposed MAF module with its different width
multipliers on Stanford Dogs (a) and ImageNet-100 (b) compared to MobileNetV1 addressing other
channel-wise attentions.

[25]; V2 for MobileNetV2 [26]; and V3 for MobileNetV3 [27] in the below investiga-
tions of the efficiency of those attention modules. Furthermore, in case no multiplier
is explicitly indicated for MobileNets, width-multiplier = 1.0 will be referred to. Due
to the enormousness of ImageNet-1k, we would like to train the MAF-based networks
with parameters generating the best results as discussed in Section 6.2.2.
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Table 2 Top-1 accuracy (%) with different attention modules on Stanford Dogs and ImageNet-100.

MobileNetV1 MobileNetV2 MobileNetV3

Dataset Attention (x0.25) (x0.50) (x0.75) (x1.0) (x0.25) (x0.50) (x0.75) (x1.0) (x0.25) (x0.50) (x0.75) (x1.0)

Stanford Dogs

No Attention 42.49 50.74 53.43 53.58 46.91 51.56 53.50 54.10 41.85 43.51 46.44 50.52

C
h
a
n
n
el

SE [35] 48.53 53.87 53.67 54.69 46.27 49.65 53.00 54.29 40.64 48.68 48.36 50.76

SRM [38] 36.02 43.15 43.88 44.34 34.62 46.17 49.14 49.66 37.03 42.63 42.58 43.88

ECA [39] 37.13 43.33 44.31 50.15 40.73 43.74 49.55 50.74 39.93 42.18 46.94 48.28

MAF 50.76 55.95 58.16 59.55 47.88 52.34 55.79 56.49 42.14 49.66 49.76 53.11

C
h
a
n
n
el
+
S
p
a
ti
a
l

CBAM [36] 47.79 51.35 52.09 53.36 43.50 51.66 52.94 56.74 43.65 50.91 51.04 53.73

MAFavg max
C 49.25 55.21 57.34 58.13 45.51 53.59 56.46 58.09 42.55 49.11 52.63 54.14

MAFavg std
C 52.16 57.59 59.06 59.14 48.19 54.12 56.22 58.81 44.90 49.19 54.04 55.05

BAM [37] 44.68 46.92 50.21 52.79 44.25 51.70 54.37 57.20 42.37 48.53 49.51 51.15

MAFB 48.12 53.23 54.22 54.32 49.22 52.69 54.39 58.60 44.27 49.83 51.45 52.04

ImageNet-100

No Attention 69.96 74.87 75.59 77.01 69.73 74.33 75.68 77.87 69.02 74.32 76.39 77.60

C
h
a
n
n
el

SE [35] 70.40 76.04 76.76 77.97 68.74 74.77 76.47 77.58 68.81 73.64 76.67 77.09

SRM [38] 69.71 72.79 74.73 75.96 64.63 74.04 76.11 76.38 67.95 72.88 75.70 76.32

ECA [39] 70.10 73.92 75.09 76.40 69.66 74.28 75.73 77.70 67.31 73.67 75.68 76.37

MAF 71.52 76.58 78.17 79.60 70.37 74.56 77.31 78.28 68.57 74.62 76.43 78.07

C
h
a
n
n
el
+
S
p
a
ti
a
l

CBAM [36] 70.74 74.47 78.03 78.12 68.37 73.85 76.68 77.62 68.59 73.52 76.32 77.26

MAFavg max
C 71.64 75.26 78.38 79.09 69.14 73.75 77.18 78.31 69.35 73.07 75.81 77.68

MAFavg std
C 71.86 76.37 78.77 79.34 70.15 75.33 76.89 79.32 69.63 73.66 76.42 77.79

BAM [37] 70.57 74.22 77.05 77.49 70.00 75.17 77.15 78.29 68.35 74.61 76.45 78.24

MAFB 71.29 74.99 76.03 76.79 69.72 74.66 77.84 78.83 68.55 73.86 76.60 78.30

Note: Numbers in parentheses indicate different width multipliers for model reduction of MobileNets.
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Fig. 6 Performances of the MAF-based modules on Stanford Dogs in comparison with other atten-
tions embedded into MobileNets (i.e., multiplier = 1.0).

It can be observed in Tables 1 and 2 that the MAF-based networks obtained bet-
ter performances for most multipliers of MobileNets in comparison with the original
MobileNets and the other attention modules as well. This advance would be thanks
to the efficient accumulation mechanism of the proposed DBR perceptron, which
generated a fused attention map by taking advantage of the inter-channel feature rela-
tionships of SGAP and SGSD. Indeed, Table 1 shows that 0.5∼1% on CIFAR-10 and
1%∼1.5% on CIFAR-100 are higher results of MAF compared to the initial MobileNets
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a)

b)
Input image No attention SE[35] SRM[38] ECA[38] MAF

Fig. 7 An efficient attention of V1+MAF on ducks (a) and an Australian terrier dog (b) in com-
parison with that of other modules. These visualizations are drawn out by Grad-CAM [63].

Fig. 8 Training and validating plots of the proposed V1+MAF (d) on Stanford Dogs compared to
other channel-wise modules: (a) V1+SE [35], (b) V1+ECA [39], (c) V1+SRM [38].

(i.e., without attention for V1 and V2, while SE [35] with r = 4 for V3). On the chal-
lenging schemes, our MAF also achieved better rates: 1%-1.5% on ImageNet-100; while
1.5%-6% on Stanford Dogs (see Table 2), particularly, up to over 8% (i.e., 50.76% con-
trast to 42.49%) when embedding MAF into V1(x0.25) (see Fig. 5). Hereinafter, we
will present evaluations of MAF’s performances in detail.

6.2.1 Performance analyses of channel-wise patterns

It would be verified that the proposed accumulation of channel-wise patterns with the
DBR perceptron produced accumulated-attentive information which enhances the effi-
ciency of the training process of MobileNets [25–27]. Based on the experimental results
in Tables 1 and 2, we can point out the following thorough assessments compared to
the particular channel-wise modules: SE [35], SRM [38], and ECA [39].
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Table 3 Complexity of MobileNetV2(x1.0) with different attention
modules.

CIFAR-100 Stanford Dogs ImageNet-1k
Attention FLOPs #Params FLOPs #Params FLOPs #Params

SE [35] 47.04M 2.38M 166.78M 2.41M 167.34M 3.54M
SRM [38] 47.03M 2.36M 166.77M 2.38M 167.33M 3.51M
ECA [39] 47.10M 2.35M 167.05M 2.38M 167.62M 3.51M
MAF 47.05M 2.40M 166.79M 2.42M 167.35M 3.55M

CBAM [36] 47.27M 2.38M 167.93M 2.41M 168.49M 3.54M

MAF
avg std
C 47.26M 2.40M 167.92M 2.42M 168.49M 3.55M

BAM [37] 47.58M 2.41M 168.66M 2.44M 169.23M 3.57M
MAFB 47.59M 2.43M 168.67M 2.45M 169.23M 3.58M

Note: FLOPs and #Params are computed by using ptflops [64].

� Thanks to the accumulated channel-wise information, MAF can make the learning
processes concentrate on the important information in more effectiveness than SE
[35], SRM [38], and ECA [39]. Indeed, Tables 1 and 2 indicate the eminent results
of MAF in most of the testing cases for MobileNets, particularly, those results with
width-multiplier = 1 that are often addressed for real applications (see Fig. 6(a)
for a visual view of the performances on Stanford Dogs). For instance, V1+MAF
gained the best rates with 79.6% and 59.55% on ImageNet-100 and Stanford Dogs.
Those can be because the attentive operation of MAF notoriously focused on ducks
in an image of ImageNet-100 (see Fig. 7(a)), while the attention of MAF on the
face of an Australian terrier dog in Stanford Dogs rather on the other external
anatomies of the dog (see Fig. 7(b)). Additionally, Fig. 8 indicates well-behaved
curves of V1+MAF (d) against V1+SE [35] (a), V1+ECA [39] (b), and V1+SRM
[38] (c). This leads to the prominent performances of MAF versus the others’.

� The experimental results have also verified that the attentive mechanism of SRM
[38] and ECA [39] is suitable for ImageNet-100 rather than Stanford Dogs. For
instance, about 76.3% is for both V3+SRM and V3+ECA on ImageNet-100, while
just 43.88% and 48.28% are on Stanford Dogs, respectively (see Table 2 for more
circumstances). It might be that they concentrated on allocating features of the
dog’s thigh instead of doing on those of its face, which are some of the distinguished
anatomies for dog recognition (see Fig. 7(b)).

� It can be observed from Table 3 that the computational complexity of MAF is
nearly the same as other channel-wise attentions. For instance of training on Stan-
ford Dogs, V2+MAF takes into account 2.42M learnable parameters, a little higher
than V2+SE [35] (2.41M), V2+SRM [38] (2.38M), and V2+ECA [39] (2.38M). Also,
it is worth mentioning that V2+MAF (56.49%) obtained a significant image clas-
sification rate in comparison with V2+SE [35] (54.29%), V2+SRM (49.66%), and
V2+ECA (50.74%). Refer to Tables 2 and 3 for further circumstances.

6.2.2 Performance analyses of spatial-channel-wise patterns

The replacement and integration of MAF into CBAM [36] and BAM [37] (i.e., MAFC

and MAFB respectively) boosted the learning ability of image representation. This
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a)

b)

Input image CBAM [36] MAF
avg max
C

MAF
avg std
C

BAM [37] MAFB

Fig. 9 An efficient attention of MAFavg max
C and MAFB on ducks (a) and an Australian terrier dog

(b) in comparison with that of others. These visualizations are drawn out by Grad-CAM [63].

Fig. 10 Training and validating plots of V1+MAFavg max
C (a) and V1+MAFavg std

C (b) on Stanford
Dogs.

advance is thanks to the DBR-based accumulation of two channel-wise pattern blocks.
To evaluate the accumulation of different channel-wise patterns, we investigate MAFC

with the DBR recalibration of SGAP and the Global Max Pooling features (SGMP )

(called MAFavg max
C ); while the recalibration of SGAP and SGSD is called MAFavg std

C .
Based on the experimental results in Tables 1 and 2, we can point out several crucial
statements as

� The proposed DBR perceptron learns more efficiently than the multi-layer bot-
tleneck perceptron (MLP) used in CBAM [36]. In other words, the proposed
accumulation by learning contemporaneously channel-wise patterns can fuse more
discriminative information than that by doing separately with an element-wise sum-
mation for the outputs. Indeed, MAFavg max

C pointed out higher performances thanks
to replacing our DBR for MLP in CBAM [36] to accumulate SGAP and SGMP . Fig.
9 intuitively shows a convergent learning process of MAFavg max

C on images of the
ducks and the Australian terrier dog compared to CBAM, while Fig. 6(b) indicates
its better classification rates. Also, refer to Tables 1 and 2 for more comparative
results of CBAM and MAFavg max

C .
� The DBR-based fusion of SGAP and SGSD produced more solid discrimination than
fusing SGAP and SGMP . It means that SGSD can provide superior power of repre-
sentative information for the attention mechanism. Fig. 10 indicates that the loss
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validation of MAFavg max
C tends to increase from the 100th epoch, while that of

MAFavg std
C decreases steadily. Furthermore, Fig. 9(a) MAFavg std

C concentrated on

all ducks, while Fig. 9(b) intuitively verifies a substantial attention of MAFavg std
C

with a wider region of the face and tail of the Australian terrier dog in comparison
with MAFavg std

C .
� Addressing the DBR recalibration for BAM [37] also improves its performance. How-
ever, it is unstable for image classification on various datasets. MAFB is absolutely
better on CIFAR-100 and Stanford Dogs, but not on the others (see Tables 1 and
2). This might be due to the loss of information caused by the spatial compression
of DSC-based tensors across the channel dimension.

� In respect of evaluating the computational complexity, MAFavg std
C and MAFB have

nearly the same as the original ones, i.e., CBAM [36] and BAM [37] respectively. For

instance, FLOPs and #Params of V2+MAFavg std
C on CIFAR-100 are 47.26M and

2.40M against 47.27M and 2.38M of CBAM [36]. In the meanwhile, those parameters
of V2+MAFB are 47.59M and 2.43M versus 47.58M and 2.41M of BAM [37] (see
more instances in Table 3).

Consequently, it can be conducted that MAFavg std
C achieved the best stability for

most versions of MobileNets (see Tables 1 and 2). Therein, the performances of

V1+MAFavg std
C will be taken into account for the below evaluations in comparison

with the state of the art. V2+MAFavg std
C gave slightly lower results with smaller

computational complexity. So there is a trade-off when considering them for imple-
mentation in practice. It means that V1+MAFavg std

C should be recommended in the
case of ordering an absolutely high accuracy.

6.3 MAF-based performances compared to state of the art

It can be observed from Table 4 that MobileNetV1 [25], adapted by our MAF module,

obtained 94.53% (V1+MAF) on CIFAR10 and 76.17% (V1+MAFavg std
C ) on CIFAR-

100, the highest rates compared to other V1-based ones. On CIFAR-100, it improved
up to 2% while its trainable parameters are #Params = 4.04M, a little higher
than the others. In addition, V2/V3+MAFavg std

C also obtained competitive results
with a smaller number of learnable parameters. Several non-MobileNet-based models
achieved better performances but took a large level of computational complexity, i.e.,
ResNet18 [22]+SE [35] (76.44% with 11.40M) and DenseNet-121 [24] (76.21% with
7.06M).

In terms of image classification on the challenging datasets, 59.55% of V1+MAF
is the best rate on Stanford Dogs (see Table 5). Meantime, 73.13% of V1+MAFavg std

C

on ImageNet-1k is the highest result in comparison with MobileNet-based networks.
V1-BSConv [29] (59.10%) has nearly the same performance as ours on Stanford Dogs,
but it is approximately 2% inferior on ImageNet-1k. Just taking into account a half
smaller number of learnable parameters, V1+MAFavg std

C is up to about 3% better
than several attention modules integrated into ResNet18 [22], i.e., (73.13%, 4.96M)

of V1+MAFavg std
C compared to (70.59%, 11.78M) of ResNet18+SE [35], (70.73%,

11.78M) of ResNet18+CBAM [36], and (71.12%, 11.71M) of ResNet18+BAM [37].
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Table 4 Top-1 performance (%) on CIFAR-10/100.

CIFAR-10 CIFAR-100
Architecture Top-1 #Params Top-1 #Params

V1 Baseline [25] 93.76 3.22M 74.27 3.31M
V1-BSConv [29] 94.30 3.22M 75.70 3.31M
V1-GDF [28] 93.87 3.28M 74.48 3.37M
V1 + SE [35] 94.22 3.70M 75.37 3.80M
V1 + SRM [38] 94.26 3.24M 75.08 3.33M
V1 + ECA [39] 94.04 3.22M 73.96 3.31M
V1 + CBAM [36] 93.98 3.70M 74.98 3.80M
V1 + BAM [37] 93.63 4.22M 75.07 4.31M
V1+MAF 94.53 3.94M 75.95 4.04M

V1+MAF
avg std
C 94.35 3.94M 76.17 4.04M

V2+MAF
avg std
C 93.86 2.28M 74.82 2.40M

V3+MAF
avg std
C 94.21 2.72M 74.65 2.84M

ResNet18 Baseline [22] 93.02 11.17M 75.10 11.20M
ResNet18 [22] + SE [35] - - 76.44 11.40M
ShuffleNetV1 [34] 92.29 0.91M 70.06 1.00M
ShuffleNetV2(x1.5) [65] 93.93 2.49M 74.53 2.58M
AugShuffleNet [66] 93.63 1.21M 74.07 1.30M
DenseNet-121 [24] 94.23 6.96M 76.21 7.06M
SqueezeNet [67] - - 69.41 0.78M

Note: “-” means “not to be reported”. Comparative attentions
on V1 are referred due to their good results, as discussed in
Section 6.2.2.

Table 5 Top-1 performance (%) on Stanford Dogs and
ImageNet-1k.

Stanford Dogs ImageNet-1k
Architecture Top-1 #Params Top-1 #Params

V1 Baseline [25] 51.60 3.33M 66.90 4.23M
V1-BSConv [29] 59.10 3.33M 71.50 4.23M
V1-GDF [28] 54.90 3.39M 67.55 4.30M
V1 [25] + SE [35] 54.69 3.82M 70.03 4.72M
V1 [25] + CBAM [36] 53.36 3.82M 70.99 4.72M
V1 [25] + BAM [37] 52.79 4.33M 69.42 5.23M
V2 Baseline [26] 56.01 2.37M 67.05 3.51M
V3-small [27] 49.40 1.16M 64.40 2.90M
V3-large [27] 54.90 3.09M 71.50 5.40M
V1+MAF 59.55 4.04M 72.71 4.96M

V1+MAF
avg std
C 59.14 4.06M 73.13 4.96M

ResNet18 Baseline [22] - - 70.40 11.69M
ResNet18 [22] + SE [35] - - 70.59 11.78M
ResNet18[22] + CBAM[36] - - 70.73 11.78M
ResNet18 [22] + BAM [37] - - 71.12 11.71M
ShuffleNetV2 [65] - - 69.36 2.30M
DenseNet-121 [24] 56.90 7.08M 74.43 7.98M
EfficientNet-B0 [32] 54.70 4.16M 77.10 5.30M
MnasNet [31] 54.80 3.26M 75.20 4.38M
SqueezeNet [67] - - 41.90 1.25M

Note: “-” means “not available” or “not to be reported”.

Those have validated the prominence of the proposed MAF-based feature atten-
tion on different datasets. Furthermore, it should be noted that DenseNet-121 [24],
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EfficientNet-B0 [32], and MnasNet [31] have higher performance on ImageNet-1k, but
they often own two disadvantages: i) requiring a larger number of trainable parameters
[24, 32], ii) their learning ability is sharply weakened on Stanford Dogs (see Table 5).

7 Conclusion

We have presented an efficient channel-wise attention module (MAF) utilizing the pro-
posed DBR perceptron for a fusion-excitation operation. The global average and the
standard deviation information of an input tensor were accumulated to produce a vol-
ume of robust lightweights. To take more spatial-wise information, MAF was addressed
as a potent channel-wise component replacing the original one of two critical atten-
tions (CBAM [36] and BAM [37]) to form two corresponding modules, i.e., MAFC and
MAFB. The experimental results on image classification have verified the appreciable
efficiency of MAF-based MobileNets in comparison with the other spatial/channel-
wise attention modules, particularly the adaption of MAF for image classification on
the challenging datasets (i.e., Stanford Dogs and ImageNet). According to the com-

prehensive evaluations, V1+MAFavg std
C should be recommended for real applications

requiring strictly high accuracy.
For perspectives, it can investigate an extra-fused attentive mechanism by tak-

ing advantage of our DBR perceptron to simultaneously accumulate SGAP , SGSD,
SGMP , and other channel-wise patterns (e.g., power-average pooling information),
while maintaining the model complexity at a reasonable level.
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